Jordan homomorphisms of upper triangular matrix rings
نویسندگان
چکیده
منابع مشابه
Jordan left derivations in full and upper triangular matrix rings
In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.
متن کاملGeneralized module homomorphisms of triangular matrix rings of order three
Let T,U and V be rings with identity and M be a unitary (T,U)-bimodule, N be a unitary (U, V )bimodule, D be a unitary (T, V )-bimodule . We characterize homomorphisms and isomorphisms of the generalized matrix ring Γ = ( T M D 0 U N 0 0 V )
متن کاملEla Jordan Left Derivations in Full and Upper Triangular Matrix Rings
In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.
متن کاملStrongly clean triangular matrix rings with endomorphisms
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2013
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.09.037