Jordan homomorphisms of upper triangular matrix rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jordan left derivations in full and upper triangular matrix rings

In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.

متن کامل

Generalized module homomorphisms of triangular matrix rings of order three

Let T,U and V be rings with identity and M be a unitary (T,U)-bimodule, N be a unitary (U, V )bimodule, D be a unitary (T, V )-bimodule . We characterize homomorphisms and isomorphisms of the generalized matrix ring Γ = ( T M D 0 U N 0 0 V )

متن کامل

Ela Jordan Left Derivations in Full and Upper Triangular Matrix Rings

In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.

متن کامل

Strongly clean triangular matrix rings with endomorphisms

‎A ring $R$ is strongly clean provided that every element‎ ‎in $R$ is the sum of an idempotent and a unit that commutate‎. ‎Let‎ ‎$T_n(R,sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $R$ where $sigma$ is an endomorphism of $R$‎. ‎We show that‎ ‎$T_2(R,sigma)$ is strongly clean if and only if for any $ain‎ ‎1+J(R)‎, ‎bin J(R)$‎, ‎$l_a-r_{sigma(b)}‎: ‎Rto R$ is surjective‎. ‎Furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2013

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.09.037